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Real Variables

In our studies we have looked in depth at

• functions f : X → Y where X and Y are 

arbitrary metric spaces,

• real-valued functions f : X →  where X is an 

arbitrary metric space,

and

• functions f :  → .

Now we want to look at functions f : n → m.



Scalar Fields

A function F: n →  is called a Scalar Field because it 

assigns to each vector in n a scalar in . 

Scalar Fields:  Think of the domain as a "field" in which  each 

point is "tagged"  with a number. Example:  Each point in a room 

can be associated with a temperature in degrees Celsius.



Vector Fields

A function F: n → m (m > 1) is called a Vector Field because 

it assigns to each vector in n a vector in m. 

Vector Fields:  Think of the domain as 

a "field" in which  each point is 

"tagged"  with a vector. Example: 

domain is the surface of a river, we can 

associate each point with a current, 

which has both magnitude and 

direction and is therefore a vector.



Vector and Scalar Fields

• Let F: n → m (m > 1) be a vector field.  Then 

there are scalar fields F1, F2, . . . , Fm from n → 

such that

F(x) = (F1 (x), F2 (x), . . . , Fm (x) )

• The functions F1, F2, . . . , Fm are called the 

coordinate functions of F.

• For example:
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The Space n: 

Linear Algebra meets Analysis


n  is a Linear space (or vector space)---each element of 


n  is a vector.  Vectors can be added together and any 

vector multiplied by a scalar (number) is also a vector. 


n  is Normed---Every element x in n has a norm ||x||, 

which is a non-negative real number and which you 

can think of as the “magnitude” of the vector.
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The Space n: 

Linear Algebra meets Analysis

The norm of ||x|| is defined to be 

the (usual) distance in n from 

x to 0.
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absolute value in 
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Differentiability---1 variable

• When we zoom in on a “sufficiently nice” 

function of one variable, we see a straight line.



Zooming and Differentiability

• We expressed this view of differentiability by saying 

that f is differentiable at p if there exists a real 

number f ’(p) such that 

provided that x is “close” to p.

• More precisely, if for all x, 
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where as x→p.

In other words, if f is 

locally linear at p.



Functions of two Variables



Functions of two Variables



Functions of two Variables



Functions of two Variables



Functions of two Variables



When we zoom in on a “sufficiently nice” function 

of two variables, we see a plane.
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(a,b)

Describing the Tangent Plane

• To describe a tangent line

we need a single number---

the slope.

• What information do we 

need to describe this 

plane?

• Besides the point (a,b), we 

need two numbers: the 

partials of f in the x- and y-

directions.
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Equation?



Describing the Tangent Plane

We can also write this equation in vector form.  

Write x = (x,y),  p = (a,b),  and   
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p
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For a general function F: n → m and for a point p in n

, we want to find a linear function Ap: n → m such that 

General Linear Approximations

The function Ap is 

linear in the linear 

algebraic sense.

In the expression                                             we can think of 

the gradient as a linear function on 2.  (It assigns a vector to 

each point in 2.)

( ) ( ) ( ) ( )L f f   
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 ( ) ( ) ( ) for  "close" to .  pF x A x p F p x p



For a general function F: n → m and for a point p in n

, we want to find a linear function Ap: n → m such that 

General Linear Approximations

Note that the expression

Ap (x-p)

is not a product.  It is the 

function Ap acting on the 

vector (x-p).

In the expression                                             we can think of 

the gradient as a linear function on 2.  (It assigns a vector to 

each point in 2.)

( ) ( ) ( ) ( )L f f   
p

x p x p p

 ( ) ( ) ( ) for  "close" to .  pF x A x p F p x p



To understand 

Differentiability

We need to understand 

Linear Functions



Linear Functions 

A function A is said to be linear provided that

( ) ( ) ( )

and

( ) ( )
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Note that A (0) = 0, since A(x) = A (x+0) = A(x)+A(0).

For a function A: n →
m, these 

requirements are very prescriptive.



Linear Functions 

It is not difficult to show that if A: n →
m is linear, then A

is of the form:
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Linear Functions 

Or to write this another way. . .
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In other words, every linear function A acts just like left-

multiplication by a matrix. Thus we cheerfully confuse the function 

A with the matrix that represents it!



Linear Algebra and Analysis 

The requirement that A: n →
m be linear is very 

prescriptive in other ways, too.

Let A be an mn matrix and the associated linear function.

•Then A is Lipschitz with

•In particular, when ||x||  1,

•That is, A is bounded on the closed unit ball of n .
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Norm of a Linear Function

• We can thus define the norm of A: n →
m by 

||A|| = sup{ ||Ax|| : ||x||1}.

• Properties of this norm:

||Ax||  ||A|| ||x|| for all xn .

||aA||=|a| ||A|| where a is a real number.

||BA||  ||B|| ||A|| (where B is an km matrix and A is an mn 

matrix.)
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BA represents the composition 

of B: m →
k and A: n →

m.



Norm of a Linear Function

• Further properties of this norm:

||A+B||  ||A|| + ||B|| (where A and B are mn matrices.)

||aA||=|a| ||A|| where a is a real number.

These two things imply that 

||A-B|| is a distance function that measures the distances between 
linear functions from n to m. 

In other words, this norm on linear functions from n to 


m acts pretty much like the norm on n .  To “first 
order” the properties that we associate with absolute 
values hold for this norm.



Local Linear Approximation
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For all x, we have

F(x)=Ap(x-p)+F(p)+E(x)

Where E(x)

is the error committed by 

Lp(x)= Ap(x-p)+F(p) in 

approximating F(x)



Local Linear Approximation

What can we say about 

the relationship between 

the matrix Ap and the 

coordinate functions 

F1, F2, F3, . . ., Fm ?

Quite a lot, actually. . .

Fact: Suppose that F: n

→
m is given by coordinate 

functions F=(F1, F2 , . . ., Fm) 

and all the partial derivatives of 

F exist “near” p n and are 

continuous at p , then  . . .

there is some matrix Ap such 

that F can be approximated 

locally near p by

( ) ( ) ( )  p pL x A x p F p



We Just Compute

First, I ask you to believe that if Ap = (A1 , A2 , . . ., An)

for all i and j with 1 i  n and 1  j  m

( )
j j

i i

A F

x x

 


 
p

This should not be too hard.  Why?

Think about tangent lines, think about tangent planes.

Considering now the matrix formulation, what is the 

partial of Aj with respect to xi? 

(Note:  Aj(x) = aj 1 x1+aj 2 x2+. . . +ajn xn )



The Derivative of F at p
(sometimes called the Jacobian Matrix of F at p)
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Some Useful Derivatives

• Identify the derivative of each vector field at  a point 

p.  Guess, then verify!

• The constant function F (x) = v.  

• The identity function F(x) = x.

• The Linear function A(x)=A x.

• AF (Where A is a linear function and F is diff’able) 

• F+G (assuming both F and G are diff’able)

• aF (where a and F is diff’able)



Continuity of the Derivative?

Theorem:  Suppose that all of the partial derivatives of 

F: n →
m exist  in a neighborhood around the point p and  

that they are all continuous at p.  Then for every  > 0 there 

exists  > 0 such that if d (z , p) <  , then 

||F’(z)- F’(p)|| < .

In other words, if the partials exist and are continuous near p 

then the Jacobian matrix for p is “close” to the Jacobian matrix 

for any “nearby” point.



Mean Value Theorem 

for Vector Fields?

 ( ) ( ) '( ) '( )    F b F a F c b a F c b a

Theorem:  Let E be an open subset of n and let F: E → m .  

Suppose that a, b and the entire line segment joining them are in 

E.  If F is differentiable at every point on the line segment 

between a and b (including the endpoints) then there exists c on 

the segment between a and b such that

Note:                                           does not hold if m >1!

Even if n = 1 and m = 2.   

 ( ) ( ) '( )  F b F a F c b a



Example?

Standard way to interpret 

F:  → 2 is to picture a 

(parametric) curve in the plane.  

Picture a fly flying around the 

curve.  It’s velocity (a vector!) at 

any point is the derivative of the 

parametric curve at that point.  

What would 

mean for a closed curve?

 ( ) ( ) '( )  F b F a F c b a



The “Take Home Message”

• The set of Linear Functions on n is normed and that 

norm behaves pretty much like the absolute value 

function.  

• There is a multi-variable version of the Mean Value 

Theorem than involves inequalities in the norms. 

• If the partials exist and are continuous, the Jacobian 

matrices corresponding to nearby points are “close” 

under the norm. 

I will remind you of these results when we need them.


