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Real Variables

In our studies we have looked in depth at

« functionsf: X — Y where X and Y are
arbitrary metric spaces,

 real-valued functions f : X — ¥ where X IS an
arbitrary metric space,

and
e functions f: {¥ — {¥,
Now we want to look at functions f ; £¥" — £xm



Scalar Fields

A function F: £3"— {1 |Is called a Scalar Field because it
assigns to each vector in £¥" a scalar in £&.
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Scalar Fields: Think of the domain as a "field" in which each
point Is "tagged" with a number. Example: Each point in a room
can be associated with a temperature in degrees Celsius.




Vector Fields

A function F: £3"— £3™ (m > 1) is called a \ector Field because
It assigns to each vector in £:" a vector in £x™M,

Vector Fields: Think of the domain as
a "field" in which each point is
"tagged" with a vector. Example:
domain is the surface of a river, we can
associate each point with a current,
which has both magnitude and
direction and is therefore a vector.




Vector and Scalar Fields

e LetF: £3"— 3™ (m > 1) be a vector field. Then

there are scalar fields F,, F,, . . ., F, from £3" — {x
such that
F(X) = (FL (X), F2(X), ..., Fp (X))
e The functions F,, F,, ..., F,, are called the

coordinate functions of F.
» Forexample: F(x,y,2) =(x22 -3, x+y’z°, sin(xyz))

Fl(X’ Y, Z)=X22—3 FZ(X, Y, Z)=X+yzz3
Fs(X, Y, Z) =SIn(xyz)



The Space "
Linear Algebra meets Analysis

13" |s a Linear space (or vector space)---each element of
{31 |s a vector. Vectors can be added together and any
vector multiplied by a scalar (number) is also a vector.

X+Y =X+ Y X+ Yo X +Y,)
2X = (2X,2X,,...,2X_)

13" Is Normed---Every element x in £x" has a norm ||X||,
which Is a non-negative real number and which you
can think of as the “magnitude” of the vector.




The Space "
Linear Algebra meets Analysis

The norm of |[x|| is defined to be
the (usual) distance in £2" from
X to 0.

The norm in £% IS

analogous to the

absolute value In
0%

x-yll= de (X, Y)

quzan(x,O):\/xf X et X

X .
|| =0 if and only if x=0

x+y[<x]+[y]

/ pod =P




Differentiability---1 variable

 When we zoom 1n on a “sufficiently nice”
function of one variable, we see a straight line.
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Zooming and Differentiability

» We expressed this view of differentiability by saying
that f is differentiable at p If there exists a real
number f ’(p) such that

f(x)~ '(p)(x—p)+ T(p)
provided that x 1s “close” to .
» More precisely, If for all x,

f(x) = f'(p)(x—p)+ f(p)+r(x)
r(x)
X-p

where >0 as x—p.

In other words, If fis

locally linear at p.




Functions of two Variables




lables

f two Var

I0NS O

Funct




Functions of two Variables




Functions of two Variables
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When we zoom in on a “sufficiently nice” function
of two variables, we see a plane.




Describing the Tangent Plane

 To describe a tangent line
we need a single number---
the slope.

 What information do we
need to describe this

plane?
 Besides the point (a,b), we
need two numbers: the

partials of f in the x- and y-
directions.

_ot(@ab)

Lap (X Y)=———(X-a)+

of (a, b)
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Describing the Tangent Plane

Lo 00) = o (x—g)+

of (a, b)

(y—b)+ f(a,b)

We can also write this equation in vector form.

Write x = (x,y), p = (a,b), and Vf(p)= <af(a,b) af(a,b)>

ox oy




General Linear Approximations

In the expression L,(x)=Vf(p)-(x—p)+ f(p) we can think of
the gradient as a linear function on £x2, (It assigns a vector to
each point in #¥2))

For a general function F: 3" — £¥Mand for a point p in "
~we want to find a linear function Ap: 3" — £3M sych that

F(X) = A, (Xx—p) +F(p) for x "close" to p.

The function Ap IS
linear In the linear
algebraic sense.

/



General Linear Approximations

In the expression L,(x)=Vf(p)-(x—p)+ f(p) we can think of
the gradient as a linear function on £x2, (It assigns a vector to
each point in #¥2))

For a general function F: 3" — £¥Mand for a point p in "
~we want to find a linear function Ap: 3" — £3M sych that

F(X) = A, (Xx—p) +F(p) for x "close" to p.

Note that the expression
Ap (X'p)

IS not a product. It is the

functlon A, acting on the

vctor (X-p). A




To understand
Differentiability

We need to understand
Linear Functions




|_Inear Functions

A function A is said to be linear provided that

AX+y) =AX)+A(y)
and
A(1X) = A A(x)

Note that A (0) =0, since A(x) = A (x+0) = A(X)+A(0).




|_Inear Functions

It is not difficult to show that if A: £¥" —¥M|s linear, then A

IS of the form:

A(X) =

A1 %
A1 %)

= | 95X

a‘mlxl

where the a;;’s are real numbers for 1=1,2,...

]=1,2,...,n.
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|_Inear Functions

Or to write this another way. . .

AX) = A, X, Xgpeee, X )

d, dp, d; Qg X
Ay Ay Ayt Ay | X
= |83 83 Qg v 83 [ X
_aml am2 am3 o amn _ _Xn |
= AX

In other words, every linear function A acts just like left-
multiplication by a matrix. Thus we cheerfully confuse the function
A with the matrix that represents it!



Linear Algebra and Analysis

Let A be an mxn matrix and the associated linear function.

m n %
-Then A is Lipschitz with IIAXIIS(ZZaﬁj ]I

i=1 j=1

m n %
*In particular, when ||x|| < 1, ”AX”S(ZZa;j |

i=1 j=1

*That Is, A 1s bounded on the closed unit ball of " .




Norm of a Linear Function

« We can thus define the norm of A: 3" —{xM py

1Al = sup [|AX]] = [x[|I<1}-

* Properties of this norm:

AVY
aA|
BA

matrix.) .

All
1A
B

IIAIIS(iiaﬁj%-

i=1 j=1

X|| for all xe £
where a Is a real number.

|Al| (where B Is an kxm matrix and A Is an mxn

BA represents the composition

of B: £x™ ¥k and A: 3" — {3




Norm of a Linear Function

 Further pro

|A+B|| <|
|aA|=|al |
These two t

A
A

perties of this norm:
| + Bl (where A and B are mxn matrices.)

| where a iIs a real number.

nings imply that

|A-B|| Is a distance function that measures the distances between
linear functions from £x" to £x™M,

In other words, this norm on linear functions from " to
£xM acts pretty much like the norm on £2" . To “first
order” the properties that we associate with absolute
values hold for this norm.



Local Linear Approximation

A(X) = Ax For x "close" to p we want
where A is the m x n matrix F(X) ~ A, (x—p) + F(p)

For all X, we have

d; dp &,
8, 8, &y - F(x)=A,(x-p)+F(p)+E(X)
n Where E(X)
A = 1 2 Gs3 0 ) /
; ae a3 Is the error committed by
A Apy  Apg a‘mn_ Lp(x): Ap(X-p)-I_F(p) In

approximating F(x)



Local Linear Approximation

Fact: Suppose that F: £x"

— 3™ |s given by coordinate

functions F=(F, F,, ..., F)

and {:\II f‘he piil,l‘tla| derivatives of samrelEre haEia e

F exist “near” p € £*"and are EEF £ 9
- Qo2 gy oo g U ¢

continuous at p, then . ..

What can we say about
the relationship between
the matrix A, and the

Quite a lot, actually. . .

there Is some matrix A, such
that F can be approximated
locally near p by

L, (X) = A, (x=p) +F(p)



We Just Compute

First, | ask you to believe that if A, = (A, Ay, .. ., A)
forall tand jwith1<i<n and1<j<m

8Aj
OX.

oF, )
OX. i

This should not be too hard. Why?

Think about tangent lines, think about tangent planes.

Considering now the matrix formulation, what is the
partial of A; with respect to x;?
(Note: Ai(X) = a1 Xy +aj, Xt . . +ay, X, )



The Derivative of F at p

(sometimes called the Jacobian Matrix of F at p)

% (o)

oF oF oF
8_x11(p) 8_xl(p) 8—)(103) o
2 3 n
oF oF oF oF
a—xf(p) 5—)(200) a—x“‘(p) 5X2(p)
2 3 !
F(p) = | ok ok ok oy ... Ok
ox (9) ox (9) ox (9) ox (9)
oF oF OF _OF,
% (9) ox, (9) ox. (9) ox. (p)_




Some Useful Derivatives

|dentify the derivative of each vector field at a point
p. Guess, then verify!

The constant function F (x) = v.

ne Identity function F(x) = Xx.

ne Linear function A(X)=A X.

AoF (Where A 1s a linear function and F 1s diff’able)
F+G (assuming both F and G are diff’able)

aF (where ac ¥ and F is diff’able)




Continuity of the Derivative?

Theorem: Suppose that all of the partial derivatives of

F. {31 —£3Mexist in a neighborhood around the point p and
that they are all continuous at p. Then for every € > 0 there
exists 6 >0 such thatifd (z, p) <d, then

¥°(2)- F>(p)l| < .

In other words, if the partials exist and are continuous near p

then the Jacobian matrix for p is “close” to the Jacobian matrix
for any “nearby” point.




Mean VValue Theorem
for Vector Fields?

Theorem: Let E be an open subset of £x"and let F: E — 3™
Suppose that a, b and the entire line segment joining them are in
E. If Fis differentiable at every point on the line segment

between a and b (including the endpoints) then there exists ¢ on
the segment between a and b such that

[F(b)-F(@)] <|F'(©)(b—a)| <[F'©)][b—a]

Note: F(b) - F(a) = F'(c)(b—a) does not hold if m >1!

Evenifn=1and m= 2.




Example?

Standard way to interpret
F: 3 — {32 s to picture a
(parametric) curve in the plane.
Picture a fly flying around the
curve. It’s velocity (a vector!) at
any point is the derivative of the
parametric curve at that point.
</ What would

F(b)-F(a)=F'(c)(b-a)
mean for a closed curve?



The “Take Home Message”

e The set of Linear Functions on X" Is normed and that
norm behaves pretty much like the absolute value
function.

* There Is a multi-variable version of the Mean Value
Theorem than involves inequalities in the norms.

» |f the partials exist and are continuous, the Jacobian
matrices corresponding to nearby points are “close”
under the norm.

| will remind you of these results when we need them.



